36 research outputs found

    Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation

    Get PDF
    Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation-related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide-ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi-billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra-deep hydrocarbon industry for deep-sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade-offs among multiple objectives, costs, and risks

    Oil spill contamination probability in the southeastern Levantine basin

    Get PDF
    Recent gas discoveries in the eastern Mediterranean Sea led to multiple operations with substantial economic interest, and with them there is a risk of oil spills and their potential environmental impacts. To examine the potential spatial distribution of this threat, we created seasonal maps of the probability of oil spill pollution reaching an area in the Israeli coastal and exclusive economic zones, given knowledge of its initial sources. We performed simulations of virtual oil spills using realistic atmospheric and oceanic conditions. The resulting maps show dominance of the alongshore northerly current, which causes the high probability areas to be stretched parallel to the coast, increasing contamination probability downstream of source points. The seasonal westerly wind forcing determines how wide the high probability areas are, and may also restrict these to a small coastal region near source points. Seasonal variability in probability distribution, oil state, and pollution time is also discussed

    Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes

    Get PDF
    Copyright: © 2011 Mora et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas

    FIGURE 1 in Gymnothorax baranesi, a new moray eel (Anguilliformes: Muraenidae) from the Red Sea

    No full text
    FIGURE 1. Gymnothorax baranesi, holotype, 857 mm TL, HUJ 18976

    Conservation challenges in the face of new hydrocarbon discoveries in the Mediterranean sea

    No full text
    Recent explorations of deep-water resources in the Mediterranean Sea provide some of the largest, most financially lucrative offshore global discoveries of natural gas. Yet, along with such discoveries are the risks and challenges of protecting the Mediterranean Sea and its unique marine species and ecosystems. The Mediterranean Sea offers a timely case study to examine the complex interactions and potential conflicts related to newly discovered marine energy resources. The region includes over 20 countries across three continents with multiple geopolitical conflicts, large and increasing populations sizes, high coastal development and over-exploitation of biological resources, all of which pose threats to its biodiversity conservation. The scarcity of data on the ecology and oceanography of the deep waters of the Mediterranean and the unknown impacts of oil and natural gas operations are great challenges for conservation and policymakers. Only few of the current conservation initiatives in the Mediterranean have explicitly considered how negative impacts of oil and gas exploration and production might threaten conservation priorities and objectives. Many approaches for explicitly incorporating hydrocarbon features into marine spatial plans already exist. Such tools can help balance economic goals and biodiversity considerations, and should be incorporated into marine spatial planning initiatives in the Mediterranean Sea and around the globe

    Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m

    No full text
    In contrast to the abundance of literature on the relationship between fish assemblages and habitat structure in the upper 30 in of coral reefs, the deeper (>40 m) parts of coral reefs are rarely studied. We examined changes in reef fish diversity and habitat structure along an increasing depth gradient, including the unknown deep reef. We ran visual and video transects along a substantial depth gradient (0 to 65 in) in the northern Red Sea and extended the known depth distribution for 48 reef species. We found a change in assemblage composition highly correlated to both the depth gradient and a reduction in the abundance of branching corals with depth. The number of reef fish species declined with depth and we also measured a high species turnover as measured by beta diversity (beta(t), beta(w)) in the deep reef. This pattern is mainly due to the replacement of the abundant damselfishes in the shallow reef, which prey on zooplankton, by zooplanktivorous sea basses and wrasses in the deep reef. The steep reduction in branching corals, which most damselfishes use for cover, may be the main factor contributing to this change. We found a peak in species richness (alpha diversity) at 30 m, a peak in beta(w) at 50 to 65 in, and peaks in beta(t) at 30 to 50 in and 50 to 65 m. The 30 in depth stratum shows species of both shallow and deep assemblages generating a transition zone with characters of both deep and shallow habitats. The fish assemblage continues to change with depth, and future research will determine if there exists a depth threshold at which the assemblage will stabilize

    Data from: Sensitivity analysis of conservation targets in systematic conservation planning

    Get PDF
    Systematic conservation planning has rapidly advanced in the past decade and has been increasingly incorporated in multiple studies and conservation projects. One of its requirements is a quantitative definition of conservation targets. While the Convention on Biological Diversity aims to expand the world's protected area network to 17% of the land surface, in many cases such uniform policy-driven targets may not be appropriate for achieving persistence of various species. Targets are often set arbitrarily, often because information required for the persistence of each species is unavailable or unknown in the focal region. Conservation planners therefore need to establish complementary novel approaches to address the gaps in setting targets. Here, we develop and present a novel method that aims to help guide the selection of conservation targets, providing support for decision makers, planners, and managers. This is achieved by examining the overall flexibility of the conservation network resulting from conservation prioritization, and aiming for greater flexibility. To test this approach we applied the decision support tool Marxan to determine marine conservation priority areas in the eastern Mediterranean Sea as a case study. We assessed the flexibility of the conservation network by comparing 80 different scenarios in which conservation targets were gradually increased and assessed by a range of calculated metrics (e.g., the percentage of the total area selected, the overall connectivity). We discovered that when conservation targets were set too low (i.e., below 10% of the distribution range of each species), very few areas were identified as irreplaceable and the conservation network was not well defined. Interestingly, when conservation targets were set too high (over 50% of the species' range), too many conservation priority areas were selected as irreplaceable, an outcome which is realistically infeasible to implement. As a general guideline, we found that flexibility in a conservation network is adequate when ~10−20% of the study area is considered irreplaceable (selection frequency values over 90%). This approach offers a useful sensitivity analysis when applying target-based systematic conservation planning tools, ensuring that the resulting protected area conservation network offers more choices for managers and decision makers

    The crowded sea: Incorporating multiple marine activities in conservation plans can significantly alter spatial priorities

    No full text
    Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes). We applied the marine zoning decision support tool Marxan to each planning scenario and tested a) the ability of each scenario to reach biodiversity targets, b) the change in opportunity cost and c) the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and economic considerations within a country's territorial waters
    corecore